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Nonlinear Analysis of Microwave Superconductor
Devices Using Full-Wave Electromagnetic Model
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Abstract— This paper presents a full electromagnetic wave
analysis for modeling the nonlinearity in high temperature su-
perconductor (HTS) microwave and millimeter-wave devices. The
HTS nonlinear model is based on the Ginzburg-Landau theory.
The electromagnetic fields associated with the currents on the
superconducting structure are obtained using a three-dimensional
full wave solution of Maxwell’s equations. A three-dimensional
finite-difference time-domain algorithm simultaneously solves the
resulting equations. The entire solution is performed in time
domain, which is a must for this type of nonlinearity analysis. The
macroscopic parameters of the HTS, the super fluid penetration
depth and the normal fluid conductivity, are calculated as func-
tions of the applied magnetic field. The nonlinear propagation
characteristics for HTS transmission line, including the effective
dielectric constant and the attenuation constant, are calculated.
As the power on the transmission line increases, the phase velocity
decreases and the line losses iucrease. The nonlinearity effects on
the current distributions inside the HTS, the electromagnetic field
distributions, and the frequency spectrum are also analyzed.

I. INTRODUCTION

THE DISCOVERY of high temperature superconductor
(HTS) in 1986 paved the way for a new exciting tech-

nology which is not mature yet. These HTS materials have
potential applications for passive microwave and rnillimeter-
wave devices. They acquire better performance than normal
conductors with respect to low loss, dispersion, low noise,

high sensitivity, and higher frequency of operation. The work-
horse HTS materials are yttrium-based YBCO with supercon-

ducting transition temperature of 90 K, and thallium-based
(TBCCO) with superconducting transition temperature over
100 K. The use of HTS in microwave and millimeter-wave
devices presents new challenges which are not relevant in the
design of normal metal devices. The field penetration effects
on the device performance need to be taken into consideration
[1]. To exploit the exciting characteristics of HTS materials,
accurate and flexible models have to be developed. London
equations are simultaneously solved with Maxwell’s equations

to predict the performance of the HTS used in microwave
and millimeter-wave devices [2]–[8]. Despite the usefulness

and simplicity of this approach, this model may be only

applied for low power applications. Moreover, the high current

value existing in some applications may not exceed the high

temperature superconductor critical current densities of hlgh-
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quality YBCO films, but they are high enough to drive the HTS

into nonlinear behavior. As an example, HTS transmission

line resonators in narrow band filters have high peak current

densities, which result from the high standing-wave ratios

on the resonator lines [9]. The nonlinear characteristics of

the HTS result in generation of harmonics and also spurious

products created by the mixing of multiple input signals.

Better understanding for the dependence of the penetration

depth inside the superconducting material as well as the

superconductor electron density on the microwave magnetic

field requires a rigorous nonlinear model. This model must

only be developed in time-domain and never in the frequency

domain or phasor form of fields [10].

The problem of modeling the nonlinearity in HTS mic-

rowave and millimeter has been tackled before using different

approaches. An iterative method combining the spectral do-

main approach and the impedance boundary condition model

is applied in [11] and [12]. The Ginzburg-Landau (GL) theory

was used to predict the nonlinear behavior in a supercon-

ducting stripline resonator as a function of the input current

[13]. These approaches were based on frequency domain

calculation. A macroscopic model of the nonlinear constitu-

tive relations in superconductors is derived from a velocity

distribution assumption [14]. To our knowledge, modeling

and full-wave analysis of the nonlinearity associated with

microwave HTS devices were never performed in the time

domain.

In this paper, a nonlinear full-wave solution, based on

the GL theory is developed using the finite-difference time-

domain (FDTD) technique. The GL theory is independent of

the microscopic mechanism in superconductor and is purely

based on the ideas of the second order phase transition

only. The physical characteristics of the HTS are blended

with the electromagnetic model using the phenomenological

two fluid model. Maxwell’s and GL equations are solved

simultaneously in three-dimensions. This time-domain nonlin-

ear model is successfully used to predict the effects of the

nonlinearity y on the performance of HTS transmission lines.

This approach takes into account the field penetration effects.

The spatial distribution of the total electrons and the number

of the super electrons compared to the normal electrons

vary with the applied power. A study of the nonlinearity

effects on the propagation characteristics, current distributions,

electromagnetic field distribution, and frequency spectrum is

conducted. Our model is flexible and can be used for any of the

planar microwave and millimeter-wave devices that include

HTS material. This approach is not only useful to predict
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the nonlinearity effects on microwave devices performance

but also can be utilized in the characterization of the HTS

materials,

II. TIME-DOMAIN VERSUS

FREQUENCY-DOMAINNUMERICAL TECHNIQUES

Numerical characterizations and modeling of guided-wave
components has been an important research topic in the past
three decades. When a specific structure is analyzed, one
has to make a choice which method is best suited for the

structure. Obviously, the choice may not be unique. One must
make a critical assessment for every possible method. Anal-

ysis and modeling the nonlinearity imposes some restrictions

one the selected numerical techniques. It is known that the

application of a signal to a wave-guiding structure including
nonlinear material causes frequency mixing to occur. This

results in generation of harmonics and spurious products.
The frequency domain approach is based on analysis in the
Fourier transform domain. It provides an elegant tool for the
reduction of the partial differential equations of mathematical
physics into ordinary ones, which in many cases are amenable

to further analytical processing. The time-dependent partial

differential equation is decoupled into a series of frequency-

dependent ones. Hence, the solution is separately carried on
each frequency component. The time-domain solution can

be obtained by the superposition of the results calculated at
each frequency components. This approach is widely used
in problem containing linear materials. However, when a
nonlinear material is used, the partial differential equation can
not be transformed to the frequency domain. The equations

for the various harmonics are no longer separable, and the

superposition technique is not allowed. Hence, the equations

must be solved in time domain. One should notice that this

is a fundamental issue. It is not a matter of approximation or
simplification.

III. NONLINEAR SUPERCONDUCTING MODEL

A. Theory

The macroscopic electromagnetic London’s equations are

able to account satisfactorily for the current persistence and
the magnetic flux exclusion (Meissner) effect [15]. However,

they do not give a completely satisfactory macroscopic picture

of all superconducting phenomena in a magnetic field, because

they regard the superconducting material as being entirely
superconducting or entirely normal. These deficiencies were
overcome in 1950 by Ginzburg and Landau, who proposed
a phenomenological set of equations, allowing for spatial
variations in the superconducting order due to the presence

of a magnetic field. The correctness of GL equations have
been proved by Gorkov based on the microscopic theory for

conventional superconductor materials, and extended beyond
their region of validity by other researchers [16]. However, an
exact theory describing the new HTS does not seem available.

The construction of GL theory is independent of the mic-
roscopic mechanism and is purely based on the ideas of the
second order phase transition only. GL began their argument
by introducing a quantity to characterize the degree of super-

conductivity at various points in the material. This quantity is

called the “order parameter” and denoted by t/@). The order

parameter is defined to be zero for a normal region and unity

for a fully superconductor region at zero temperature with zero

magnetic field. Clearly, q)(~) must be closely related to the

super fluid fraction in a two-fluid model, but the two quantities
are not chosen identical. Rather, to allow for supercurrent
flow, ~(~) is taken as a complex function and interpreted as
analogous to a “wave function” for superconductivity, so that
its magnitude square can be identified with the super fluid
density NS(7)

N.(7=) = I? J(F)12. (1)

R should be noted that @ is not the system wave function for

the electrons in the material, since it is defined to be zero in
the normal state. However, pursuing the interpretation of the
order parameter as a wave function, it is reasonable to write
the expression for the supercurrent ~., in the absence of a
magnetic field, as

J.=— $* [4*(0 :v@(0 + 4(+”(01 (2)

where e* and m* are the charge and mass of the entities whose

wave function is @(T), h is the reduced Plank’s constant, and
i is ~. It is equally natural to include the magnetic field
via the vector potential ~

( )1+4(F) ~V – e*Z@) ~’(~) . (3)

From the two-fluid hydrodynamic model point of view, the

super fluid component has been regarded as a “quantum fluid”
and a quantum wave function is associated with it. Reinforcing
this interpretation, a more suggestive form of (3) is

,(T)D.(T-)T.(P) = e*lV (4)

where v.(F) is the super fluid velocity, and can be related to
the phase of the order parameter

[

w)
77,(7) = ; FLv— –

IYW)I 1
e*X(F) (5)

Furthermore, if there is no position dependence to the super-

conductivity and the order parameter @(T) is independent of

position T, then (3) reduces to the London’s relation

7.(T) = ~Nsx(T). (6)
m*

Next, a relation determining ~ must be constructed.

Ginzburg and Landau focused on the free energy of the
material ~., which they assume as a furlctional of @ and q)’.
The equation determining ~ is obtained by requiring that Fe,

be a minimum with respect to variations of @*. The condition
that F., be a minimum can be shown to be equivalent to
requiring that the super fluid and normal components of
the two-fluid model be in stable equilibrium with respect to
each other. Thus, the functional Fs, plays a role analogous
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to a Lagrangian of Schrodinger wave mechanics, while its
minimum value with respect to ~ and ~“ is just the free energy
of the superconducting phase in thermodynamic equilibrium
with the magnetic field.

GL phenomenological theory results in a set of two equa-

tions relating the order parameter ~ and the magnetic vector

potential ~. These equations can be reduced to a dimensionless
form by taking all the lengths in units of the weak-field pen-

etration depth A, measuring the magnetic field in terms of the
thermodynamic critical magnetic field Hc, and introducing a
reduced order parameter normalized by its zero-field position-
independent value. Then, the dimensionless GL equations can
be expressed as follows

( ‘)(1 - qj(r)T#jv- :% -AN 2tiN =0. (8)

The subscript N denotes normalized quantities. The boundary
conditions for AN and ~hI at the superconductor-insulator
interface are given by

‘“GVN-ZN)+N=”
‘ii x (VN X ~jv) ‘ii X /@~N.

Equation (9) forces the normal component of the

(9)

(lo)

conduction

current to vanish at superconducting-insulator boundary, re-
sulting the boundary condition for the order parameter ~.
Equation (10) indicates that the boundary conditions imposed

on the magnetic vector potential ~ corresponds to the magnetic
field tangential to the superconductor surface. The dimension-
less parameter K, known as GL parameter is defined as

~ = fi(e*/l’i)p@CA~ (11)

where

~L,= ~m*//LCte*2$&
\@m12=n~

EN = II/Hc

~N = x/~L#oHc

VN =/’lLv

tiN = ~j’iba

AL and n~ are the low field London penetration depth and the
low field superconducting electron density. The subscript N
will be omitted in the rest of the paper, for simplicity.

A common feature of the family of HTS, including YBaCuO
and TIBaCaCuO, is that they all have layered crystal struc-
tures. It is generally believed that the two-dimensional CUO.2
network is the most essential building block of the HTS
materials [17]. This means that we must take account of
the strong anisotropy of the new HTS systems, and the GL
type scheme needs to be modified [18]. The anisotropy in

HTS materials is a complicated issue, which we analyzed
fully in a separate paper [19]. However, thin-film microwave
transmission lines will favor films in which conducting sheets
lie in the plane of the film. To overcome the limitation in

applying the GL theory to the new HTS materials, the solution

for GL equations is only performed for the longitudinal super
fluid z-current component in the HTS strip. The transverse

~- and y-current components are calculated using London

low field model since the current in the transverse plane is
relatively small for most of microwave and millimeter-wave
applications working in the low gigahertz band. Using the
London gauge V . A = O and assuming @ = Itil exp(zo),

the normalized GL equations for the super fluid z-component

current density can be simplified to the following expressions

V~Az = ]~12Az (12)

(-jW+l =1’?AM2 – 1+ $
)

(13)

where t stands for the transverse x–y direction and V# = O.
The required boundary conditions become

ii x (V~ x 2A. ) = po~t (14)

ii . vtl~l =0. (15)

B. Solution of GL Equations

The GL coupled nonlinear differential equations are solved

simultaneously to obtain the superconducting current and
the order parameter. The first nonlinear GL equation, which
resolves the order parameter, is solved using a Newton-
SSOR iteration scheme. The second GL equation, which
corresponds to the superconducting current, is manipulated
using a linearized scheme. These two equations are solved
iteratively until convergence, starting with initial conditions

101 = 1 and A, = O. The described procedure is rapid
and robust, and is successfully applied to the solution of

GL equations both in one- and two-dimensions. The solution

converges in few iterations, which depends on the applied
magnetic field intensity.

In our analysis, the HTS macroscopic parameters are those
measured for YBaz CU307–Z at T = 77 K with Tc equals to
90 K. The GL parameter ~ equals to 44.8. The corresponding
penetration depth A(T) and critical magnetic flux density
MOHC(T) equals to .323 ~m and 0.1 T, respectively. Fig, 1
presents the variations of the super fluid current density with
distance for one-dimensional superconducting slab at different
magnetic fields. These results are in excellent agreement
with those in Lam et al. [13]. The nonlinearity in the su-
perconducting material is clear, especially near the edge of
the material. The superconducting current near the edge is
suppressed in favor of the normal fluid current, which explains
the increase in the losses as the applied field increases. Also,
the predicted penetration depth using GL theory is higher than
the low-field value calculated from the linear London model,

which can explain the more pronounced slow wave effects
associated with the superconducting material as the magnetic
field intensity increases. Thus, the field penetration effects on
the superconducting material is represented more rigorously
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Fig. 1. Normalized super fluid current density in YBaz CUJ 07–Z HTS slab.

Fig. 2. Tangentialmagnetic field intensity to a l’Ba2 CU3 07_ z HTS strip
in microstrip line.

in the GL theory compared to London model. These results

confirm the success of the phenomenological GL model to get
a field and position dependent macroscopic parameters for the
superconducting material.

To demonstrate the versatility of this scheme, two-

dimensional solution for atypical HTS strip used in microwave

and millimeter-wave devices is presented. The strip width and
thickness are 7.5 and 1.0 ~m, respectively. The strip is divided

into a numerical grid cells. The generated mesh is uniform

in the vertical direction and nonuniform in the horizontal

direction. The horizontal mesh size decreases near the edges
of the strip where more rapid change in the macroscopic

parameters of the superconductor is expected. The mesh size
is chosen smaller than the low-field penetration depth. The
HTS parameters are the same as previously described. The

typical tangential magnetic field shown in Fig. 2 is applied

to the strip. This field distribution is obtained for the HTS

microstrip line using a full-wave electromagnetic simulator,

which will be explained later. The corresponding applied
power is calculated. GL equations are solved at different

levels of applied power. The maximum rf power PC.f, where
the HTS microstrip looses completely its superconductivity,
is predicted. Its value equals to 920 W/cm2. The normalized

superconducting current distributions are shown in Figs. 3–5
for different applied power levels: 834,410, and 181.8 W/cmz

denoted by 0.9, 0.45, and 0.2Pc.f, respectively. Fig. 3 shows

that the HTS may be considered linear when the applied

magnetic field is low, i.e. approximately less than 0.2 PC.f.
As the applied power increases, the dependence of the
macroscopic parameter of the superconducting material on the
magnetic field becomes nonlinear. A typical distribution for the
normalized superconducting current density in this nonlinear
region at 0.45PC,f is presented in Fig. 4. London’s equation
fails to predict the superconductor behavior in this nonlinear

Applied power = 0.2 Pcrf

Fig. 3. Normahzed super fluid current density dkribution in
Cut 07-X HTS strip in microstripline (applied power = 0.2F’C=[).

YBa2

Apptied power= 0.4S Pcrf

Fig. 4. Normalized super fluid current density distribution in
CU307-Z HTS stripin microstripline (applied power = 0.45Pcrf )

YBa2

Apptied power= 0.9 Pcrf

Fig. 5. Normalized super fluid current density distribution in YBaz
CU3 07– z HTS stripin microstripline (applied power = 0.9PC,[ ).

region, even the type II superconducting material is still in the
mixed state, and possesses a relatively good superconductor
nature. Fig. 5 demonstrates that the superconducting material
partially looses its superconductivity at high rf power 0.9Pc,f.
It is obvious that the material lost its superconductivity near

the edge of the strip where the singularity in the field is
expected, On the other hand, the material behaves as a good

superconductor at the center of the strip. This behavior will
not only introduce nonlinearity effects but it will also increase
the noise. Fig. 6 presents the normalized super fluid electron
density at 0.45 Pc,f. It is clear that the bottom part of the strip
looses its superconductivity much faster than the top section,
This can be explained by the effect of the dielectric substrate
underneath the strip, which increases the field intensity at the
bottom side. Thus, superconducting applications will favor
low dielectric substrate to decrease the nonlinearity effects in

microwave and millimeter- wave applications.

IV. TIME-DOMAIN ELECTROMAGNETICMODEL

The FDTD solution of Maxwell’s equations is one of the
most suitable numerical modeling approaches for the elec-
tromagnetic analysis of volumes containing arbitrary shaped
dielectric and metal objects. FDTD is relatively simple in



2594 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 43, NO. 11, NOVEMBER 1995

Applied power = 0.45 Pczf

Fig. 6. Normalized super fluid electron density distribution in YBa2
CU307–X HTS stzipin microstripline (applied power = 0.45Pc,f).

concept and execution. However, it is remarkably robust, and
provides highly accurate modeling predictions for a wide va-

riety of electromagnetic wave interaction problems [20]–[22].

FDTD is a marching-in-time procedure which simulates the

continuous actual waves by sampled-data numerical analogs
propagating in a computer data space. The FDTD is well
known [23]. Therefore, it is not discussed here. Only inter-
esting features peculiar to our approach will be presented.
These features are necessary to successfully model the HTS

microwave devices, where the field penetration effects need to
be taken into consideration. They are the nonuniform graded
mesh generator [8], the Perfectly Matched Layer Absorbing

Boundary Conditions (PML-ABC) [24], and the execution of

the computer code on Massively Parallel Processors machine
(MPP) [25].

The developed three-dimensional finite-difference time-
domain scheme is capable of modeling the finite thickness
of the HTS strip. No approximations are made to the strip
thickness. This leads to a very dense uniform mesh that
requires a non realistic memory storage. To alleviate this

problem, a graded nonuniform mesh generator is implemented
along the cross section of the waveguiding structure. The
computational domain is discritized according to the following
expression

AZ?(Z)::?= w * [(3’-(+)’1 ‘“)
where Ax is the mesh size, W distance to be discritized, n

number of points, and p is the mesh resolution factor. The

smallest mesh size is chosen inside and around the HTS strip.

It is equal to a fraction of the magnetic field penetration depth

for the HTS material. The mesh resolution factor p must

be optimized to minimize the dispersion introduced by the

nonuniform discretization. The Courant stability condition is

based on the smallest mesh size.

The computational domain is closed by the PML-ABC.

This approach provides a termination for the FDTD scheme

with negligible reflection using a non-physical lossy medium

adjacent to the outer boundary. In our FDTD scheme, the

mesh is terminated by extending the dielectric layers into its

matching PML [26]. The conductors are extended without

PML region. This configuration, shown in Fig. 7, simulates

an extremely Iossy waveguiding structure, The propagating

z

Fig. 7. Microstrip line with the perfectly matched layers (PML) absorbing

wave is highly attenuated in the PML without any reflection
at the interface between the PML and the actual structure. This

approach fits the need for an appropriate ABC for dispersive
multimodal propagation. It is essential for calculating the

dispersion characteristics of a transmission line, especially the
losses. The enhancement applied to the PML-ABC approach
eliminates any possible discontinuity effects at the end of the
line.

Recent advances in FDTD modeling concepts and software
implementation, combined with advances in computers, have

expanded the scope, accuracy, and speed of FDTD approach.
FDTD technique has an explicit or semi-implicit scheme,

where parallel computers provide a good environment to run
such schemes [27]. The ~ and II fields components are
calculated using their nearest ~ and ~ field components.
This algorithm avoids the time consuming communication

within the MPP. The size of the problem must be optimized
to efficiently use the parallel machine. The fields arrays
are expected to be exactly mapped and properly aligned on
the parallel processors to get the maximum computational
capacity of the MPP. The computer code for our analysis is

written in FORTRAN 90 and is executed in massively parallel
machine (MASPAR) environment. The implementation of the
PML-ABC in three dimension requires splitting each field
components into two subcomponents. This algorithm requires
a large memory storage on parallel machine. However, the
computational gains acquired by using both the PML-ABC
and the MPP are indispensable for completing this project.

The time dependence of the excitation is chosen as a
Gaussian pulse. The turn-on amplitude of the excitation ought
to be small and smooth. The field patterns of the appropriate

modes, which are obtained from an exhaustive time simulation,
is enforced on the source plane. After the excitation pulse

is launched, the PML-ABC is switched at the front wall.
The Gaussian pulse width is chosen to reduce the discretiza-
tion errors, especially with nonuniform mesh. The maximum
spatial step size is less than ~ of the smallest wavelength
existing in the excitation pulse. A perfectly magnetic wall
is inserted at the line of symmetry of the transmission line.
The simulation is performed on half the structure. The ground
plane is considered as a perfect conductor, for simplicity. Two
probes along the transmission line are used to record the time
dependent field components. The propagation characteristics
of the HTS transmission line as functions of frequency are
calculated by taking the Fourier transform of those field
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components [21]. Our electromagnetic simulator is validated

and the results are presented in [19].

V. NONLINEAR 3-D FULL-WAVE HTS MODEL

The nonlinear superconducting model is incorporated into
the 3-D full-wave electromagnetic simulator using the two
fluid model postulate. The two fluid model assumes that

the electron gas in a superconductor material consists of

two gases, the superconducting electron gas and the normal

electron gas [29], The main macroscopic parameters of the
superconducting material are the penetration depth A, and
the normal conductivity on. The physical nature of the
superconducting phenomena is included in the dependence
of the charge carrier densities and the effective masses of
the superconducting and normal states, as well as the normal
electrons relaxation time, on the temperature. The total current
density in superconducting material is expressed as follows

7=7.+7. (17)

where ~n is the normal state current density, which
obeys Ohm’s law

7. = On(H(F), 2’)77

and ~s is the superconducting fluid current
follows the modified form of GL equation

6’73 1

& =
E.

/Jo~;(~(O,q

(18)

density, which

(19)

Here, the HTS macroscopic parameters on and A, are

nonlinear and are assumed to be field and temperature
dependent. The temperature dependence is approximated by
the well-known Gorter-Casimir model. In fact, this model is
in good agreement with the measured penetration depth for
conventional superconductors, but not for HTS [30]. The field
dependence is obtained from the solution of the phenomeno-
logical GL equations. The normalized order parameter, which
corresponds to the fraction of the super fluid electrons density

and is shown in (11), is calculated. It is field, position, and
temperature dependent. The normal fluid electrons density

is calculated from the conservation of the total number

of electrons in the superconductor. The spatial, field, and
temperature dependent magnetic field penetration depth & for
the superconductor is obtained from the following expressions

where As(O, O) is the low field penetration depth measured
at T = O and II = O and T. is the critical temperature for
the superconductor calculated at H = O. The parameters
a and ,B may be obtained from experimental studies. In
our analysis, we chose a = 2 and /3 = 4 following GL
model for the field dependence and Gorter-Casimir for

m
1 t= O.n=O

II 1 m
1

SolveNonlinewHTSmodelr ,1OmsuParameterLpdste?., &~

I
UpdatsElechicFields

L-/)No ti
dt>T

n.* +1

A--)
Fig. 8. Flow chart of the nonlinear analysis algorithm.

the temperature approximations. The corresponding normal
conductivity is expressed as follows

On(H(T), T) = On(H./T.)

where on (lfC/TC ) is the maximum normal conductivity y mea-
sured either at T = Tc or H = Hc and Hc is the critical mag-
netic field for the superconductor calculated at T = O. Equa-
tions (20) and (21 ) are one of the main results of this paper.

Our nonlinear analysis algorithm can be summarized in
Fig. 8. First, the excitation pulse is launched into the HTS mi-
crowave device. Then, the magnetic field components are up-

dated using the FDTD approach. Next, the tangential magnetic
field to the HTS strip surface are used as boundary conditions
for the nonlinear HTS simulator. The normalized super fluid

electrons density is calculated as previously described. The
spatial, field, and temperature dependent macroscopic HTS
parameters on and A. are updated. The super fluid and normal
fluid current densities are calculated. Finally, the electric field
components are updated using the electromagnetic simulator.
This procedure is repeated for a time period suitable to analyze

wave propagation characteristics inside the structure. The
temporal fields are probed during the simulation process. The
applied power is measured at the first probe.

VI. RESULTSAND DISCUSSION

The results are obtained for YBa2 Cu307_Z superconduct-
ing microstrip line, shown in Fig. 9 with critical temperature
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Fig.9. HTS Microstrip line geometry.

of 90 K, critical magnetic flux density po~. (T) of 0.1 T,

and GL parameter of 44.8 at 77 K. The superconducting

microstrip line has a 50 Q impedance with a strip width of
7.5 pm, and a thickness of 1 pm. The substrate thickness is
10 pm with ~. = 13. The transmission line characteristics are
simply chosen to demonstrate the nonlinear wave propagation
along the line. The maximum rf power, Pc,f, where the
HTS microstrip looses completely its superconductivity, is
predicted using GL solution. Its value equals to 920 W/cm2.

Numerical results are obtained at different levels of the applied
power: 834, 410, and 181.8 W/cm2 denoted by 0.9, 0.45, and

0.2PC,f, respectively. The temporal magnetic field propagating

along the line are probed at 60 and 150 pm, and shown

in Fig. 10. The amplitude of the wave is attenuated as the
applied field increases. Also, the slow wave effect can be
observed from the figure. Fig. 10 also shows that London’s
model incorrectly predicts higher pulse amplitudes and lower
attenuation even at high power. This qualitative discussion
gives a good insight into the behavior of the wave propagating

along the transmission line. Fig. 11 compares the effective
dielectric constant of the transmission line at different applied
power levels. Strictly speaking, the effective dielectric constant

of the transmission line did not vary. Actually, the effective

magnetic permeability of the line was changed. Hence, the
propagation velocity did change with the applied power. Since
the product of the electric permittivity and the magnetic per-
meability appear in the phase velocity calculation, variations
in the phase velocity we normally expressed in terms of the
effective dielectric constant. The authors acknowledge that
for the case at hand, the effective permeability would be the
correct presentation of the device physics, However, it was
not used to avoid confusing the readers by implementing a
new terminology. The effective dielectric constant predicted
using London’s equations is smaller than the one obtained
from GL solution at low applied power. This can be explained
knowing that the penetration depth predicted by London theory
is smaller than the one obtained from GL model, which
agrees well with the experimental observations [30]. The
effective dielectric constant increases as the applied power
increases. This slow wave effect is due to the increase in
the internal inductance of the line introduced by the increase

in the field penetration as the applied power increases. The

fractional change in the effective dielectric constant at different

power levels obtained from GL model with respect to the one
calculated using London’s theory is drawn in Fig. 12. The
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Fig. 10. Normalized tangential magnetic field intensity under the HTS
probed at 60 and 150 pm.

change in the effective dielectric constant increases with

1995

Strip

the

increase in the power level up to 0.7Pc,f. It is approximately
constant for higher power levels, where almost complete field
penetration occurs. The attenuation constant for the HTS at
different levels of applied power is presented in Fig. 13. As
the applied power increases, the attenuation constant increases
as well. This can be explained by the increase in the normal

electron density in favor of the super electron density as the
field penetrates the HTS. Also, It is observed that the HTS

loses its superconducting characteristics earlier than its static

critical power. This is due to the field singularity associated

with the planar microwave and millimeter-wave devices. It is

noticed that the change in the propagation characteristics of the
HTS microstrip line is not linear with the applied field. The
change is more pronounced as the applied power increases.
This is understood from the nature of the superconducting
material, which deteriorates very quickly as the applied power
approaches its critical value. The fractional change in the

attenuation constant obtained from GL model with respect to
the value predicted by London model at 10 GHz is depicted

in Fig. 14. It is clear that the HTS looses its superconductivity

very quickly as the applied power approaches the electromag-
netic critical power. Also, the nonlinearity associated with the

HTS appears very early, even with the material in fairly good

superconducting stage. The change in the losses is faster and
more nonlinear than the change in the phase velocity. This
can be explained knowing that the losses are ohmic, which
are induced by the moving particles. On the other hand, the
effect on the phase velocity is a variation in the stored kinetic

energy in the superconductor which is mostly a wave effect.
Hence, particle related effects can be stronger and observed

before the wave related effects.
The effect of the applied field on the current distribution is

presented in Figs, 15–17. Fig. 15 shows the super fluid current
distribution at the bottom of the HTS strip. It is observed
that the London model under estimates the current cm-rying
capacity of the HTS material. The HTS strip looses part of its
superconductivity at the edges as the applied power increases
from 0.2–0.45PC-f. For 0.9PC,f case, the partial loss of the
superconductivity is induced across the entire cross section

of the HTS strip. It is more pronounced at the edge of the

HTS strip, where the super fluid current for the 0.9PC,f case
is almost equal to the 0.45PC,f one. The super fluid current
distribution at the top of the HTS strip is presented in Fig. 16.
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Fig. 11. Effective dielectric constant for the HTS microstrip line at different
applied power levels.
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Fig. 13. Attenuation constant for the HTS microstrip line at different applied
power levels.

The current values are less than the one obtained for the bottom

of the strip as explained before. For the 0.9Pc,f case, the

super fluid current increases at the top surface because the

applied field is less than the critical magnetic field of the HTS

material. Thus, the superconductor redistributes the super fluid

as the applied field increases. The normal fluid current density

behavior will be opposite to the super fluid one based on to

the conservation in the total number of electrons in the HTS.

Fig. 17 shows the super fluid current distribution at the side
of the HTS strip. The superconductivity of the HTS material

decreases as the applied power increases. The distribution
obtained from GL model at low power levels equals to the

one predicted by the London model. Then, the effect of

the nonlinemity on the electromagnetic field distribution in

the microstrip line configuration is studied. The normalized

tangential magnetic field intensity at the top and the bottom
of the strip are presented in Fig. 18. The effect of the applied
power on the electromagnetic field distribution is small. It is
only observed near the edge of the strip. This explains the
small change in the phase velocity of the wave propagating
along the line. Finally, the effect of the nonlinearity on the
frequency spectrum of the wave propagating along the line is

analyzed in Fig. 19. The fractional change in the amplitude

of the output pulse frequency components increases with the

applied power. It is observed that as the power level increases,

the amplitudes of the different harmonics change, which is
one of the primarily characteristics of nonlinear devices. This
confirms our point that the nonlinearity has to be modeled in
the time domain. The results calculated from GL model for low
applied power are approximately the same as the ones obtained
from the linear London model. This validates our treatment
for the HTS as linear material below the low applied power
value.

VII. CONCLUSION

A nonlinear full-wave three-dimension time-domain anal-
ysis for the HTS microwave devices is presented. This ap-
proach takes into account the variation of the macroscopic
parameters of the superconducting material with the applied
power, position, and temperature simultaneously. The wave
penetration effects are rigorously included using the features of
the three-dimensional finite-difference time-domain approach.
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Fig. 16. Normalized longitudinal super fluid current density at the top
surface of the HTS strip at different applied power levels.
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The nonlinearity in the HTS is modeled by the GL equations.

The super fluid electron density is calculated at different levels
of appliedpower.The maximum power for the HTS stfip is

predicted for the microstrip line. Numerical results show that

a change in the phase velocity of the wave propagating along

the line of about 1.570 occurs as the applied power reaches

0,9 of the maximum rf power. The corresponding increase in

the attenuation is dramatic. It increased 170 times compared

to the low power case. The effect on the electromagnetic

field distribution is pronounced near the edge of the HTS
strip. The super fluid current density distributions change
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0
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Fig. 19. Fractional change in the amplitude of the frequency spectrum of the
output pulse w.r.t. the dc component at different applied power levels.

dramatically with the applied field, The change in the fre-
quency spectrum is successfully depicted. The linear London
model underestimates the field penetration inside the HTS
material. It also overestimates the current crowding effects.
Thus, the nonlinearity associated with the HTS material is
successfully modeled and studied. Application of this complete

three-dimension time-domain nonlinear simulator on different
microwave and millimeter-wave devices will be presented in

a later publication.
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